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Sampling theorem in macroscopic electrodynamics of crystal lattices
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Two ways may be used to describe the electromagnetic field-condensed media interaction. When one way is
to get over a discrete structure of a medium by the averaging procedure, another way may be conceived as
follows: to discretize fields on the basis of the discrete structure of a medium. When initial restrictions to the
wave number spectrum take place, one can use the so-called sampling theorem for a medium modeled as a
triple infinite periodic array of identicab-functional scattering elements. Taking into account the Lorenz-
Lorentz model one can develop a dynamical theory which considers strong field fluctuations in crystal lattices.
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PACS numbgs): 41.20—-q, 03.50.De, 77.22.d, 61.10.Dp

[. INTRODUCTION sults are known as the theorem of samplings or countings, or
as the Kotelnikov-Shenon theoref6—8|. Because of the

Phenomenological macroscopic electrodynamics is basdimiting cutoff wave numbekK, all variables in macroscopic
on microscopic equations for electromagnetic fields. Formaglectrodynamics are finite-spectrum functions. When initial
passage from microscopic equations to macroscopic descripestrictions to the wave number spectrum take place, one can
tion of condensed media is realized with an averaging atortis€ the sampling theorem for a medium modeled as a triple
or molecule positions. A similar procedure is used to dednfinite periodic array of identicab-functional scattering el-
scribe artificial(composit¢ materials by effective parameters ements.
of continuous medi#l,2]. In this paper, we deliberately reject the spatial average of

To use macroscopic Maxwell's equations for the materialmicroscopic charges and will discretize the fields on the ba-
continuum, the maximum scale of material nonhomogeneitypis of the discrete structure of a medium. We will use the
has to be much less than distances of macroscopic fieldorenz-Lorentz theory which provides a solution that takes
variations. For electromagnetic waves these distances corréfto account only the dipole term in the induced field. Since
spond to the wavelength. Obviously, in any macroscopidhis theory considers only dipole interactions between par-
problem there will be a natural scale of length and, thereforeticles, the results will be valid only for particles with small
we can use only those variables which have the Fourierdimensions compared with their spacing. As it is a static field
spectrum components up to some limiting cutoff wave numtheory[1,2], the Lorenz-Lorentz theory may be extended to
ber K (K may correspond, for example, to the inverse ofthe dynamical regime, taking into account the dipole-dipole
spacing between particlesn other words, only those Fou- interaction in crystal lattices. Such an analysis was made in
rier components wittk<K are relevant to the macroscopic [5,9]. This method, however, is valid only for smatom-
problem. This question was discussed by Robingin In pared with the inverse of dimensions of a lattice kcalave
his book, Robinson makes a distinction between the sobumbers. In our theory we do not consider the material con-
called truncation(of the wave number spectrinand the tinuum and therefore an analysis is not restricted by very
statistical-mechanical averaging over various sorts of ensmall (because of the averaging proceduneve numbers.
sembles. Usuallk<K and, therefore, these properties are The model makes it possible to take into account the retarded
not taken into account. When effects of material nonlocafields in dipole interactions, so we have the dynamical theory
relations are supposed to be considered, one can characterfecrystal lattices.

a medium with constitutive parameters dependent on the This papers is devoted to dielectric crystal lattices. The
wave vector. This is the so-called effect of spatial dispersioProposed theory may be, however, successfully extended to
[4,5]. The notion of the material continuum is still taken into complex media. In the following papdd0], we use our
account in this case. Therefore, an analysis is made for smdethod for bianisotropic crystal lattices.

(compared to the inverse of spacing between parjiclese

numbers.

Two ways may be used to describe the electromagnetiti. SPATIAL DISPERSION AND FIELD DISCRETIZATION
field-condensed media interaction. One way is to get over a - .
discrete structure of a medium by the averaging procedure, AS a.ge”ef?' description of a te”?pora”y caysal and mi-
while another way may be conceived as follows: to discretizé:roscgp'f:a”y mhomogeneous medium, the. mtegral-form
fields on the basis of the discrete structure of a mediumconstitutive relations have to be used. For dielectric media
Maxwell's electrodynamics is based on the space-time con’’® have{4,5]
tinuum. At the same time, the theory of information mostly
deals with discrete elements. One of the fundamental results .
of thg theory of mfprmanon is expression of f]nlte—spectrum Di(t,F)=f dt’f di e (4,77 E (1',F), (1)
functions by a series of samplings, or countings. These re- —o
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Here, only the causality principlghat the electric displace- tors (magnetostatic waves in ferromagnetics, elastodynamic
mentD at the timet is defined by the electric fielf at the duasielectrostatic waves in piezoelectriosdue to the Cou-

time t’<t) is taken into account. lomb interaction between the mobile chargepace-charge
Usually integral relationg1) are considered for a case wavgs). .
when the kernek;; is dependable on differencés-t’ and Itis supposed that because of relationstif)sand(4) one

F—f". It means that a medium is supposed to be time invarican make the Taylor-series expansionsg)(w,IZ) in powers

ant and spatially homogeneous. The Fourier-Laplace trangf k. Such an expansion is possible if the limit of the long-
formation gives for dielectric media wavelength(quasistatit approximation exist$4,5]:

D0.K) = E(0,K) - E(w.K), @ (R 0— &) )

where the tilde denotes the Fourier images. This relation is The linear response functions in the form of integral op-

used to describe temporally and spatially dispersive continuerator(1) have diverse applications, not only in the theory of

ous medid4,5]. Such relations are also useful to obtain thecontinuous media. The same relationships also describe the

effective constitutive parametéi®(w,k) for composite ma-  linear systems for time and space signal procesfie|.

terials[11,12). Let us consider a spatially homogeneous dielectric medium
For a time-invariant and spatially homogeneous mediumaS @ linear system of space signal processsupposing, of

the kernele;;(t',F") is the only characteristic of a dielectric COUrse, that the causality principle is taken into accoiife

medium. This function may be interpreted as a “response”have for relation(1)

of a medium to the field action described by the Dir@c

function. I_n the case.of.a magnetic medium, a system may be Di(F)= LU A’ (7 —")E;(7")

characterized by a similar response function. A local charac-

ter of the response functions in magnetodielectric media

shows that constitutive parameters of materials have to be :f dr'L[8(F—F")]E; ("), (6)

obtained on the basis of solution of quasistatic problems.

It is supposed in crystal optics that in the integral Fourier . . - .
transformation, the Fourier images with wherelL is a linear operator describing the transformation of

an input signal ;) into an output signal ;). In such a
k<k,, (3)  consideration,

wherek, =2=/L, L is a characteristic lengtlia distance €j(r=r")=L[o(r—=r")] (7
between atomsare mainly essenti§B—5|. The smallness of ) )
the parametekL is a geometric criterion of homogeneniza- iS the so-called apparatus function or impulse-response func-
tion of a medium into the material continuum. At the sametion [6,7). . _
time, spatial dispersion is also determined by the small pa- Together with mathematical problems of uniqueness and
rameterkL [4,5]. So, an obvious contradiction in initial as- correctness of the solution of the integral equatiép the
sumptions of the theory takes place: we try to describe guestion of interpolation arises: can one defiagactly or
certain effect in a continuous medium knowing that this ef-apPproximately the input or output effects on the basis of
fect is determined by the same small parameter as the pararfiiscrete elements of the respori§é? In the theory of infor-
eter of homogenization in this medium. One can trace thignation these problems are analyzed in the scope of the sam-
ambiguous situation when effects of optical activity are anaPling theorem[6]. In our case of an analysis of condensed
lyzed. While the authors if¥,5] consider optical activity as Media, an additional question arises: how does one correlate
a particular case of a general effect of spatial dispersion ifhe polarization of every particle with sampling values of the
dielectric media described by relatiorts), (2), other re- electric field and define sampling values of the electric dis-
searchers analyze optical activityhirality) as an indepen- Placement? . .
dent phenomenon with independently postulated constitutive L€t the actual medium be modeled as a triple infinite pe-
relations[13—15. This may play an essential role when ef- riodic array of |dent|gal dlpqlar scatterlng elements in some
fects of spatial dispersion in compléianisotropi¢ media homogeneous and isotropic host medium. Such a model,
are considerefi16,17. Whgn t_he host medium is vacuum or dielectric, was used in a
Another situation takes place when the scale of nonlocaiStatic field theory(the Lorenz-Lorentz theoyyfor natural di-
ity | is essentially large in comparison with the characteristicelectrics [1] or artificial dielectrics[2]. We will use this
lengthL but less in comparison with the wavelength, so themodel to extend the Lorenz-Lorentz theory to the dynamical

following relationships take place: regime. The host medium we will characterize as a dielectric
with permittivity e (in a particular case, it may be vacuum
k<k <k, (4) with e=€g) and the permeability.y. The wave number in

the host mediung(g?= w?eu,) determines retardation in
wherek,=2#/l. Such nonlocal effects may take place in the dipole-dipole interaction between dipolar scattering ele-
media with quasistati¢potentia) wave propagation. To de- ments.
scribe such media Barybin used the notion of active polar- Let in our model the spacing between elements be de-
ized medid 18]. The potential wave propagation is due to thenoted byAx,Ay,Az. The elements are identified by the in-
short-length interactions between adjacent polarization vedeger indicesn,n,|[ —o<<(m,n,l)<e]. Every dipolar scat-
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terer is considered as&source. Let us define the sampling f is equal to zero fofq,|>Qy, |q,|>Qy, |a,/>Q,, where
valuesf¢(r) of a continuous scalar functidi{) in nodes of  Q,,Q,,Q, are the limiting cutoff wave numbers. If spacings

a lattice: between nodes of a lattice are satisfied with the conditions
f f i i i A A A ! A ! A ! (10
r)="f(r S(x— S(y— X< 5—, S —, Azs__—,
D=1 2 2 2 x=max)sly=nly) 2Q, T2, 2Q,
X 8(z—1Az) one can obtair?(d) on the basis of the Fourier image of
e 1 N y . fs(q) of the functionfy(r) [6-8|:
10 5v Ay © EEWEAVEEY
f ol :f g AV/! / /4 11
here (@=1(DAVA 35,120,120, (12)
AV=AxAyAz (9)  Where~ is the rectangle function and where for angoor-

dinate, we have
is a volume of a cell. Thé€ or comb functions are defined as
sequences oféfunctions [7,8]. For example, C(x/AX) ( ai )_ 5
=AXZp_ . d(x—mAX). 12Q) o, ael-Q.Ql (42
We suppose that the functioi(r) is the function with _
finite g spectrum, wherej is the wave vector in the host \When the Fourier imagé(q) is known one can express the
material. It means that the Fourier imafye) of the function  function f() as follows[6-8]:

1, gie[-Qi,Qil,

f(r)=8AVQXQyQZ|:2_ME > f(mAX,nAy,lAZ)sina X,,)sindY,,)sinaZ)), (13)

=—w m=—©

where the sinc function is defined as sirwinxik and  periodic array of electric dipoles. L& be the dipole field

where produced by all the particles in the infinite array. The aver-
) age value of the total field in the mediutwhich, in fact,
SN X,,) = i 2 Qy(Xx—mAX)] (14) appears in macroscopic Maxwell equatipis defined as a
m 27Q(Xx—mAx) ' sum of two fields:
. sif27Qy(y —nAy)] EV=EO+EP (17
sinqY,) = 270,(y—nhy) (19
Y The averaged dipole fieIEg") is dependable on the wave
. SiN27Q(z—1A2)] v_ector(j. For a par'gicle that is symmetrical about the_ coor-
singZ))= (16) dinate planes passing through the center of the particle, the
2mQ,(z—14A2) quasistatic averaged dipole field
For a medium modeled as a triple infinite periodic array, Egp)(ﬁ)lqa():O. (18)

components of continuous fields may be represented as sam-

pling values on the basis of the procedure shown above forhis is correct because of the symmetry of the three-
an arbitrary scalar functioh. One can correlate polarization dimensional array?2].

of every particle with sampling values of the effective fields  For thei component of the total field, the field samplings
and define samplings of the electric displacement and magyre defined as
netic flux density. The sampling theorem enables us to re-

construct the full Fourier spectrum of the electromagnetic * ~

field. So, we have field discretization based on the discrete E(sf)(F)= > 2 X E(ati)(mAx,nAy,lAz)
structure of a medium. |=7e n=me mese

©

X 8(X—mAX)S8(y—nAy)d(z—1Az). (19
IIl. FIELD SAMPLINGS IN DIELECTRIC CRYSTAL
LATTICES For the fieldsE{”) and ng> we have similar expressions de-
noted, respectively, bE(S?) and E(Sip). Because of the linear-

Let E© be the electric field in the homogeneous isotropic. ) .
ity of relationships, one has

host medium(vacuum, in a particular cagwith the permit-
tivity e. This field is considered as the external field applied EO_E© L () 20)
to a condensed medium quasistatically modeled as a triple Si Si S
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The microscopic dipole moment densiiy, is expressed (compared with spacing between partigle&s a result, one
as sequences af functions[19] and, therefore, is repre- has E(l)—o So, one can write thaE(p) is equal toE("

sented as a series of samplings. Forittemponent we have However we have to keep only the radiaté@airl) part of
EY) and therefore, we have
(Bmic)i = 2 E Z pi(mAx,nAy,1A2)
= e mm e EQ'=AV[C;(6)~Cij(0)]Ps, (28)
X 8(Xx—mAX) 8(y—nAy)d(z—1Az)

(21 whereC;;(0) is the interaction tensor at the quasistatic limit.
=Ps;

At the quasistatic limit §—0) the field sampling&€{® are
equal to zero.

Taking Egs.(27) and (28) into account we can represent
Eq. (24) as

where p(mAx,nAy,lAz) is the dipole moment of the par-
ticle characterized by the numbersn,|.

Now we define the sampling vect®¥; with thei compo-

nent as 1
® Dsi:EE(siO)+e[Cij(q C”(O)](g]kE(O))—F gl]E(O)
Ds=€E.’+Pg, (22

i i i (29)

where This expression may be written in the form
Ps,

Pe= 1y (23 Dy ()= xi (D E(F). (30

Taking Eq.(20) into account, one obtains Hered is considered as a parameter.
© 1 () When the sampling functiorD¢(r) is known, one can
Dy =e[Eg +ES 1+ Ps. (24 reconstruct the Fourier spectrum of the displacement vector
The induced dipole moment of every particle is propor-2(d)- On the basis of Eq11), we have
tional to the electric field. We have for sampling functions
=~ = Ux q q;
i (G)=x:(GE (G /1 7 Y /1
ps, = e (ES+E), (25) D@ =xi (DEg (DAV. (2Qx (ZQy> (2Q2>

wherea;; is the tensor of polarizability anB{’ is the sam- Eﬁs(*)AV/{ % ),( Ay )/< Gz ) (31)
pling vector of the interaction field, i.e., the field acting to the 2Qx/ 12Qy/) 12Q;
particle at the origin due to all the neighboring particles _ '
[1,2]. The interaction field is proportional to the induced di- This expression may be written as
pole moment of the particle and may be expressed as _ _

E0=Cyeps, (26) D(@)=X(HE(4), (32

whereCj is the interaction tensor dependableeon the waveNhereé(O)(q) is the Fourier image of the ﬁe|§(0)(f)_
vectord. In the next section, the interaction ten&(qj) will Expression(32) may be considered as an analog of for-
be evaluated. One can solve a system of two vector equanula (2) used in[4,5] for spatially dispersive continuous
tions, Eqs(25) and(26), and represent the result in the gen- media. In our case, however, the wave veda@nd the elec-

eral form tric field E©) do not correspond to the wave vector and the
electric field in the actual medium, but correspond to the
P.= 1 giiE (o)_ 27) wave vec.tor and_the electric field in t_he host me_dium

Nl (vacuum, in a particular caseAt the same time, our deriva-

. ) ) tion shows that tensgf has to be considered as the effective
Here Eq.(23) is taken into account. The tensgf; in EQ.  parameter of the actual medium. The reader should not be
(27) is dependent on the wave vectr confused by this point. As we have pointed out above, in our
Now let us define the fielE& in Eq. (24). The dipole  model of dipolar scattering elements in the host medium, the

field produced by all the particlés® is equal to the sum of Wave n_umberq determi_nes retardation in the d_ipole-dipole
the interaction fiel€® and the dipole field produced by the interaction. Therefore, in the proposed dynamical theory of

) =) ) i crystal lattices, all effective-medium quantities, which de-
particle located at the origig*™’. Because of the dipole field ggyipe the actual medium, are dependent on the wave number

structure[1], the sampling fU”CtiOTE(sil) is modeled by two i the host medium. The static-field theory of crystal lattices
types of comb-functions which are distinguished in signsshows that because of symmetry of the three-dimensional
Since particles have dimensions very small compared wittarray, the average value of the total field is equal to the field
their spacing, these positive and negative comb functions aii@ the host medium2]. Our dynamical theory also shows

displaced from each other on negligible small distanceshat sampling functions could be expressed by the sampling
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of the electric field in the host mediufsee expressio(29)].  where the prime indicates the omission of the term with

Thus, the physical meaning of expressi@2) becomes =n=I=0.

clear. e o _ Electric field E(m,n,l) we define as the electric dipole
When we considex(d) as the Fourier image of a certain g [1]

original function x(f), the following convolution-form ex-

pression takes place:

E(mnl)= ([3*(* 5) *J( = —izwq)
m1n1 = u U'p _p -
Di(r)zf dF’ i (F—F)E(). (33) 4me Fonl ool
. . . I A
This is an analog of Eq1) for spatially homogeneous media —[d(d-p)—p] : exp(i27gr mnp)»
mnl

when the causality principle is taken into account.
(35

IV. EVALUATION OF THE INTERACTION TENSOR
We have introduced tensai(q) on the basis of the for- \ynerer,,  is the distance from the particle at the origin to

mal procedure supposing that interaction ten&fiq) is  the particle characterized by numbersn,|; G is the unit
known. Therefore the question of how one evaluates the inyector directed along the radius vector,. Substitution of

teraction tensor arises. _ Eq. (35) into Eqg. (34) gives C;(d) when summations over
The interaction tensor is given from the summation of them n | for a three-dimensional array of unit dipoles are made.
electric fields due to the array of dipoles: At the quasistatic limit, one obtains the interaction tensor

o o w0 on the basis of summations for the quasistatic tegw-Q)
C () D= "E.(mn,l), 34 in Eq. (35). These summations ovar,n,| give, for example,
i(@)Px 2 230 mzw it ) (34) for the y component of the field,

|=—0 n=—

L% < [800:p)-p]
S 3y oy BApel
=—®0 N=—w Mm=—x% mnl

o0 oo

-y i, 3[(MAX)(nAy)p,+ (nAy)?p,+(nAy)(1AZ)p,]—[(MAX)*+ (nAy)®+(1A2)%]p,
I ECEY Nt [(MAX)?+(nAy)*+(1A2)%]%2

(36)

Since the indices in Eq36) run equally over positive and negative values, the cross terms involmax)(nAy)p, and
(hAy)(IAz)p, vanish. One can rewrite E§36) as

e - 2(nAY)?—(mAx)%2—(1Az)?

E(m.n.Dyle-0=7 ¢ .zz_m n m;w [(mAx)2+ (nAy)Z+ (1a2) 252 Py- (37)
This shows, in result, that the interaction COﬂSté(]@) is a diagonal tensor:
E(m,n,1)jlq—0=C;;(0)p;. (39)

The serieq37) has been summed, using the Poisson summation formula. One can also use an alternative approach based on
the method of imagel2]. -

Now we will analyze the general expression f0(G)(q+0) based on Eq934) and(35). Let the limiting cutoff wave
numbers be defined as

B 1 B 1 _ 1
=Zax’ Qy_ZAy’ Q=547

(39

In our model of small particles in comparison with their spaajmg=G-r. We have, for example, for the component of the
field
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- S Z 3(m/2Q,)(n/2Q,) px+ (N2/Q2) py + 3(n/2Q,) (1/2Q,) p,— (MP/4Q2+1%/4Q7) p,
SULLID Mm-S NP (M?/4Q%+ n2/4Q2+12/4Q2%)%?
. G Gy L G ||, (MQIVQyPt(MQ)(1/Q)p,~ (MY Q5 +1%Q))py
|1 '2“(”‘ 20, " 2q, " 2QZ” 7’ (MP14QZ+ n?/4Q2+ 12/4Q2)5
Ux dy a, |2 . Ox dy d;
X mZQx+n2_Qy+|2Qz) }ex;{|2w<m2QX+n2—Qy+l 20,/ | (40

_ Inthese sums, the cross terms involvimy/ Q,) (n/Qy) px and (n/Qy)(1/Q) p, vanish and one obtains the diagonal tensor
C(9):
E(m,n,1);=Cj;(d)p; . (41

For given quantitie®, ,Q,,Q, the interaction tensoC;;(§) may be represented in the form

oo

i — , . Ox dy .. G
E_OO n;_x m;_m Fn(qx,qy,qz,m,n,l)exr{lh(m 2Qx+n 2—Qy+l 2Qz)

It is necessary to note that in our considerat@(q) is the finite-spectrum function. This means that &) givesC;;(4)
only for [a,/<Qy, |ay/<Qy, |a,/=<Q,. For other values ofj we haveC;;(q)=0.
Because of the finite-spectrum functions, one can express

ij(d)zl : (42)

i i i'Fjj exp{i2w(m O Ay | qz”

+n 5
1 0 2Q, 2Q,  2Q,

(e (B %) e . O , Oy .. %
_’{ZQX)/’(zQy)”(ZQZ)lE_w 2 Fnex‘{'zw(m 20, "2q, " 2Qz”'

(43
This relation makes it possible to rewrite H42) as
cya=| [ | oyynextamiuray+a.axayax @4
where
- D e o SIN27Qux—am) sin(2wQ,y— 7n) sin(27Qz— )
G”(X’y'z)_sQXQyQﬁ;x n:Z_w mz_ I 27Qx—7m 27Quy—mn 27Qz—wl (45

When wave numberg,,q, ,q, are considered as param- solution that takes into account only the dipole term in the
eters in the expression for the functién, , one can see that induced field, one can develop a dynamical theory which
Cj;(d) is the Fourier image of the functio&;;(r) taking considered strong field fluctuations in crystal lattices. One of

into account thaF; is equal to zero fom=n=1=0. the ways to realize the dynamical theory of crystal lattices is
to reject the spatial average of microscopic charges and dis-
V. CONCLUDING REMARKS cretize the fields on the basis of the discrete structure of a

medium. This method is based on the use of the so-called
The actual Coulomb field in the crystal lattice is different sampling theorem.

from the macroscopic field. In their dynamical theory of In this paper we have shown how the sampling theorem
crystal lattices, Born and Huang used Ewald’'s method fomay be applied to the dynamical theory of crystal lattices.
providing a way of separating the macroscopic field from theOur method becomes very important when the wave length
actual Coulomb field9]. It was supposed that due to the in a medium is comparable with the spacing between par-
dipole-dipole interaction, the lattice could be imagined as &icles. In such a case the known methods of an analysis of
polarized continuum with small perturbation of dielectric po- spatially dispersive media based on the concept of a material

larization. continuum has obvious contradictions in the initial assump-
Based on the Lorenz-Lorentz theotwhich provides a tion.
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Any numerical examples to illustrate the usefulness of outransform is an efficient method for computing the discrete
method are beyond the scope of this paper. Nevertheless, it Fourier transfornj20].
important to point out some aspects concerning the effective-
ness of the necessary computations. In our analysis we sup-

posed that the fields are described by finite-spectrum func-
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