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Sampling theorem in macroscopic electrodynamics of crystal lattices

E. O. Kamenetskii
Faculty of Engineering, Department of Electrical Engineering–Physical Electronics, Tel Aviv University, Tel-Aviv 69978, Israel

~Received 30 June 1997!

Two ways may be used to describe the electromagnetic field-condensed media interaction. When one way is
to get over a discrete structure of a medium by the averaging procedure, another way may be conceived as
follows: to discretize fields on the basis of the discrete structure of a medium. When initial restrictions to the
wave number spectrum take place, one can use the so-called sampling theorem for a medium modeled as a
triple infinite periodic array of identicald-functional scattering elements. Taking into account the Lorenz-
Lorentz model one can develop a dynamical theory which considers strong field fluctuations in crystal lattices.
@S1063-651X~98!08203-8#

PACS number~s!: 41.20.2q, 03.50.De, 77.22.2d, 61.10.Dp
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I. INTRODUCTION

Phenomenological macroscopic electrodynamics is ba
on microscopic equations for electromagnetic fields. Form
passage from microscopic equations to macroscopic des
tion of condensed media is realized with an averaging a
or molecule positions. A similar procedure is used to d
scribe artificial~composite! materials by effective paramete
of continuous media@1,2#.

To use macroscopic Maxwell’s equations for the mate
continuum, the maximum scale of material nonhomogen
has to be much less than distances of macroscopic
variations. For electromagnetic waves these distances c
spond to the wavelength. Obviously, in any macrosco
problem there will be a natural scale of length and, therefo
we can use only those variables which have the Four
spectrum components up to some limiting cutoff wave nu
ber K ~K may correspond, for example, to the inverse
spacing between particles!. In other words, only those Fou
rier components withk,K are relevant to the macroscop
problem. This question was discussed by Robinson@3#. In
his book, Robinson makes a distinction between the
called truncation~of the wave number spectrum! and the
statistical-mechanical averaging over various sorts of
sembles. Usuallyk!K and, therefore, these properties a
not taken into account. When effects of material nonlo
relations are supposed to be considered, one can charac
a medium with constitutive parameters dependent on
wave vector. This is the so-called effect of spatial dispers
@4,5#. The notion of the material continuum is still taken in
account in this case. Therefore, an analysis is made for s
~compared to the inverse of spacing between particles! wave
numbers.

Two ways may be used to describe the electromagn
field-condensed media interaction. One way is to get ove
discrete structure of a medium by the averaging proced
while another way may be conceived as follows: to discre
fields on the basis of the discrete structure of a mediu
Maxwell’s electrodynamics is based on the space-time c
tinuum. At the same time, the theory of information mos
deals with discrete elements. One of the fundamental res
of the theory of information is expression of finite-spectru
functions by a series of samplings, or countings. These
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sults are known as the theorem of samplings or countings
as the Kotelnikov-Shenon theorem@6–8#. Because of the
limiting cutoff wave numberK, all variables in macroscopic
electrodynamics are finite-spectrum functions. When ini
restrictions to the wave number spectrum take place, one
use the sampling theorem for a medium modeled as a tr
infinite periodic array of identicald-functional scattering el-
ements.

In this paper, we deliberately reject the spatial average
microscopic charges and will discretize the fields on the
sis of the discrete structure of a medium. We will use t
Lorenz-Lorentz theory which provides a solution that tak
into account only the dipole term in the induced field. Sin
this theory considers only dipole interactions between p
ticles, the results will be valid only for particles with sma
dimensions compared with their spacing. As it is a static fi
theory @1,2#, the Lorenz-Lorentz theory may be extended
the dynamical regime, taking into account the dipole-dip
interaction in crystal lattices. Such an analysis was mad
@5,9#. This method, however, is valid only for small~com-
pared with the inverse of dimensions of a lattice cell! wave
numbers. In our theory we do not consider the material c
tinuum and therefore an analysis is not restricted by v
small ~because of the averaging procedure! wave numbers.
The model makes it possible to take into account the retar
fields in dipole interactions, so we have the dynamical the
of crystal lattices.

This papers is devoted to dielectric crystal lattices. T
proposed theory may be, however, successfully extende
complex media. In the following paper@10#, we use our
method for bianisotropic crystal lattices.

II. SPATIAL DISPERSION AND FIELD DISCRETIZATION

As a general description of a temporally causal and
croscopically inhomogeneous medium, the integral-fo
constitutive relations have to be used. For dielectric me
we have@4,5#

Di~ t,rW !5E
2`

t

dt8E drW8e i j ~ t,rW,t8,rW8!Ej~ t8,rW8!, ~1!
3556 © 1998 The American Physical Society
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57 3557SAMPLING THEOREM IN MACROSCOPIC . . .
Here, only the causality principle~that the electric displace
mentDW at the timet is defined by the electric fieldEW at the
time t8,t! is taken into account.

Usually integral relations~1! are considered for a cas
when the kernele i j is dependable on differencest2t8 and
rW2rW8. It means that a medium is supposed to be time inv
ant and spatially homogeneous. The Fourier-Laplace tra
formation gives for dielectric media

DW̃ ~v,kW !5eJ~v,kW !•EW̃ ~v,kW !, ~2!

where the tilde denotes the Fourier images. This relatio
used to describe temporally and spatially dispersive cont
ous media@4,5#. Such relations are also useful to obtain t
effective constitutive parametereJ eff(v,kW) for composite ma-
terials @11,12#.

For a time-invariant and spatially homogeneous mediu
the kernele i j (t8,rW8) is the only characteristic of a dielectri
medium. This function may be interpreted as a ‘‘respons
of a medium to the field action described by the Diracd
function. In the case of a magnetic medium, a system ma
characterized by a similar response function. A local char
ter of the response functions in magnetodielectric me
shows that constitutive parameters of materials have to
obtained on the basis of solution of quasistatic problems

It is supposed in crystal optics that in the integral Four
transformation, the Fourier images with

k!kL , ~3!

where kL52p/L, L is a characteristic length~a distance
between atoms!, are mainly essential@3–5#. The smallness of
the parameterkL is a geometric criterion of homogeneniz
tion of a medium into the material continuum. At the sam
time, spatial dispersion is also determined by the small
rameterkL @4,5#. So, an obvious contradiction in initial as
sumptions of the theory takes place: we try to describ
certain effect in a continuous medium knowing that this
fect is determined by the same small parameter as the pa
eter of homogenization in this medium. One can trace
ambiguous situation when effects of optical activity are a
lyzed. While the authors in@4,5# consider optical activity as
a particular case of a general effect of spatial dispersion
dielectric media described by relations~1!, ~2!, other re-
searchers analyze optical activity~chirality! as an indepen-
dent phenomenon with independently postulated constitu
relations@13–15#. This may play an essential role when e
fects of spatial dispersion in complex~bianisotropic! media
are considered@16,17#.

Another situation takes place when the scale of nonlo
ity l is essentially large in comparison with the characteris
lengthL but less in comparison with the wavelength, so t
following relationships take place:

k!kl!kL , ~4!

where kl52p/ l . Such nonlocal effects may take place
media with quasistatic~potential! wave propagation. To de
scribe such media Barybin used the notion of active po
ized media@18#. The potential wave propagation is due to t
short-length interactions between adjacent polarization v
i-
s-
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u-
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tors ~magnetostatic waves in ferromagnetics, elastodyna
quasielectrostatic waves in piezoelectrics! or due to the Cou-
lomb interaction between the mobile charges~space-charge
waves!.

It is supposed that because of relationships~3! and~4! one
can make the Taylor-series expansion ofe i j (v,kW ) in powers
of kW . Such an expansion is possible if the limit of the lon
wavelength~quasistatic! approximation exists@4,5#:

eJ~v,kW !u ukW u→0→eJ~v! ~5!

The linear response functions in the form of integral o
erator~1! have diverse applications, not only in the theory
continuous media. The same relationships also describe
linear systems for time and space signal processing@6–8#.
Let us consider a spatially homogeneous dielectric med
as a linear system of space signal processing~supposing, of
course, that the causality principle is taken into account!. We
have for relation~1!

Di~rW !5LF E drW8d~rW2rW8!Ej~rW8!G
5E drW8L@d~rW2rW8!#Ej~rW8!, ~6!

whereL is a linear operator describing the transformation
an input signal (Ej ) into an output signal (Di). In such a
consideration,

e i j ~rW2rW8![L@d~rW2rW8!# ~7!

is the so-called apparatus function or impulse-response fu
tion @6,7#.

Together with mathematical problems of uniqueness
correctness of the solution of the integral equation~6!, the
question of interpolation arises: can one define~exactly or
approximately! the input or output effects on the basis
discrete elements of the response@6#? In the theory of infor-
mation these problems are analyzed in the scope of the s
pling theorem@6#. In our case of an analysis of condens
media, an additional question arises: how does one corre
the polarization of every particle with sampling values of t
electric field and define sampling values of the electric d
placement?

Let the actual medium be modeled as a triple infinite p
riodic array of identical dipolar scattering elements in so
homogeneous and isotropic host medium. Such a mo
when the host medium is vacuum or dielectric, was used
static field theory~the Lorenz-Lorentz theory! for natural di-
electrics @1# or artificial dielectrics@2#. We will use this
model to extend the Lorenz-Lorentz theory to the dynami
regime. The host medium we will characterize as a dielec
with permittivity e ~in a particular case, it may be vacuu
with e5e0! and the permeabilitym0 . The wave number in
the host mediumq(q25v2em0) determines retardation in
the dipole-dipole interaction between dipolar scattering e
ments.

Let in our model the spacing between elements be
noted byDx,Dy,Dz. The elements are identified by the in
teger indicesm,n,l @2`,(m,n,l ),`#. Every dipolar scat-
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terer is considered as ad source. Let us define the samplin
valuesf s(rW) of a continuous scalar functionf (rW) in nodes of
a lattice:

f s~rW !5 f ~rW ! (
l 52`

`

(
n52`

`

(
m52`

`

d~x2mDx!d~y2nDy!

3d~z2 lDz!

[ f ~rW !
1

DV
CS x

DxD CS y

DyD CS z

DzD ~8!

where

DV5DxDyDz ~9!

is a volume of a cell. TheC or comb functions are defined a
sequences ofd-functions @7,8#. For example, C(x/Dx)
5Dx(m52`

` d(x2mDx).
We suppose that the functionf (rW) is the function with

finite qW spectrum, whereqW is the wave vector in the hos
material. It means that the Fourier imagef̃ (qW ) of the function
y
sa

f
n
ds
a
r
ti

re

pic

ie
rip
f is equal to zero foruqxu.Qx , uqyu.Qy , uqzu.Qz , where
Qx ,Qy ,Qz are the limiting cutoff wave numbers. If spacing
between nodes of a lattice are satisfied with the conditio

Dx<
1

2Qx
, Dy<

1

2Qy
, Dz<

1

2Qz
, ~10!

one can obtainf̃ (qW ) on the basis of the Fourier image o
f̃ s(qW ) of the functionf s(rW) @6–8#:

f̃ ~qW !5 f̃ s~qW !DVrS qx

2Qx
D rS qy

2Qy
D rS qz

2Qz
D ~11!

wherer is the rectangle function and where for anyi coor-
dinate, we have

rS qi

2Qi
D5H 1, qiP@2Qi ,Qi #,

0, qi¹@2Qi ,Qi #.
~12!

When the Fourier imagef̃ (qW ) is known one can express th
function f (rW) as follows@6–8#:
f ~rW !58DVQxQyQz (
l 52`

`

(
n52`

`

(
m52`

`

f ~mDx,nDy,lDz!sinc~Xm!sinc~Yn!sinc~Zl !, ~13!
er-
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where the sinc function is defined as sincx5sinx/x and
where

sinc~Xm!5
sin@2pQx~x2mDx!#

2pQx~x2mDx!
, ~14!

sinc~Yn!5
sin@2pQy~y2nDy!#

2pQy~y2nDy!
, ~15!

sinc~Zl !5
sin@2pQz~z2 lDz!#

2pQz~z2 lDz!
. ~16!

For a medium modeled as a triple infinite periodic arra
components of continuous fields may be represented as
pling values on the basis of the procedure shown above
an arbitrary scalar functionf . One can correlate polarizatio
of every particle with sampling values of the effective fiel
and define samplings of the electric displacement and m
netic flux density. The sampling theorem enables us to
construct the full Fourier spectrum of the electromagne
field. So, we have field discretization based on the disc
structure of a medium.

III. FIELD SAMPLINGS IN DIELECTRIC CRYSTAL
LATTICES

Let EW (0) be the electric field in the homogeneous isotro
host medium~vacuum, in a particular case! with the permit-
tivity e. This field is considered as the external field appl
to a condensed medium quasistatically modeled as a t
,
m-
or

g-
e-
c
te

d
le

periodic array of electric dipoles. LetEW (p) be the dipole field
produced by all the particles in the infinite array. The av
age value of the total field in the medium~which, in fact,
appears in macroscopic Maxwell equations! is defined as a
sum of two fields:

EW a
~ t !5EW ~0!1EW a

~p! , ~17!

The averaged dipole fieldEW a
(p) is dependable on the wav

vector qW . For a particle that is symmetrical about the coo
dinate planes passing through the center of the particle,
quasistatic averaged dipole field

Ea
~p!~qW !uq→050. ~18!

This is correct because of the symmetry of the thr
dimensional array@2#.

For thei component of the total field, the field sampling
are defined as

Esi

~ t !~rW !5 (
l 52`

`

(
n52`

`

(
m52`

`

Eai

~ t !~mDx,nDy,lDz!

3d~x2mDx!d~y2nDy!d~z2 lDz!. ~19!

For the fieldsEi
(0) andEai

(p) we have similar expressions de

noted, respectively, byEsi

(0) andEsi

(p) . Because of the linear

ity of relationships, one has

Esi

~ t !5Esi

~0!1Esi

~p! . ~20!
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57 3559SAMPLING THEOREM IN MACROSCOPIC . . .
The microscopic dipole moment densitypW mic is expressed
as sequences ofd functions @19# and, therefore, is repre
sented as a series of samplings. For thei component we have

~pW mic! i5 (
l 52`

`

(
n52`

`

(
m52`

`

pi~mDx,nDy,lDz!

3d~x2mDx!d~y2nDy!d~z2 lDz!

[psi
, ~21!

where pW (mDx,nDy,lDz) is the dipole moment of the par
ticle characterized by the numbersm,n,l .

Now we define the sampling vectorDW s with the i compo-
nent as

Dsi
5eEsi

~ t !1Psi
, ~22!

where

Psi
5

psi

DV
. ~23!

Taking Eq.~20! into account, one obtains

Dsi
5e@Esi

~0!1Esi

~p!#1Psi
. ~24!

The induced dipole moment of every particle is prop
tional to the electric field. We have for sampling function

psi
5ea i j ~Esj

~0!1Esj

~ i !!, ~25!

wherea i j is the tensor of polarizability andEW s
( i ) is the sam-

pling vector of the interaction field, i.e., the field acting to t
particle at the origin due to all the neighboring particl
@1,2#. The interaction field is proportional to the induced d
pole moment of the particle and may be expressed as

Esj

~ i !5Cjkpsk
, ~26!

whereCjk is the interaction tensor dependable on the wa
vectorqW . In the next section, the interaction tensorCJ (qW ) will
be evaluated. One can solve a system of two vector eq
tions, Eqs.~25! and~26!, and represent the result in the ge
eral form

Psi
5

1

DV
gi j Esj

~0! . ~27!

Here Eq.~23! is taken into account. The tensorgi j in Eq.
~27! is dependent on the wave vectorqW .

Now let us define the fieldEsi

(p) in Eq. ~24!. The dipole

field produced by all the particlesEW (p) is equal to the sum o
the interaction fieldEW ( i ) and the dipole field produced by th
particle located at the originEW (1). Because of the dipole field
structure@1#, the sampling functionEsi

(1) is modeled by two

types of comb-functions which are distinguished in sig
Since particles have dimensions very small compared w
their spacing, these positive and negative comb functions
displaced from each other on negligible small distan
-

e

a-

.
th
re
s

~compared with spacing between particles!. As a result, one
has Esi

(1)50. So, one can write thatEsi

(p) is equal toEsi

( i ) .

However, we have to keep only the radiated~curl! part of
EW s

( i ) and therefore, we have

Esi

~p!5DV@Ci j ~qW !2Ci j ~0!#Psj
, ~28!

whereCi j (0) is the interaction tensor at the quasistatic lim
At the quasistatic limit (q→0) the field samplingsEW s

(p) are
equal to zero.

Taking Eqs.~27! and ~28! into account we can represen
Eq. ~24! as

Dsi
5eEsi

~0!1e@Ci j ~qW !2Ci j ~0!#~gjkEsk

~0!!1
1

DV
gi j Esj

~0! .

~29!

This expression may be written in the form

Dsi
~rW !5x i j ~qW !Esj

~0!~rW !. ~30!

HereqW is considered as a parameter.
When the sampling functionDW s(rW) is known, one can

reconstruct the Fourier spectrum of the displacement ve

DW̃ (qW ). On the basis of Eq.~11!, we have

D̃i~qW !5x i j ~qW !Ẽsj

~0!~qW !DVrS qx

2Qx
D rS qy

2Qy
D rS qz

2Qz
D

[D̃si
~qW !DVrS qx

2Qx
D rS qy

2Qy
D rS qz

2Qz
D . ~31!

This expression may be written as

DW̃ ~qW !5xJ~qW !EW̃ ~0!~qW !, ~32!

whereEW̃ (0)(qW ) is the Fourier image of the fieldEW (0)(rW).
Expression~32! may be considered as an analog of fo

mula ~2! used in @4,5# for spatially dispersive continuou
media. In our case, however, the wave vectorqW and the elec-
tric field EW (0) do not correspond to the wave vector and t
electric field in the actual medium, but correspond to t
wave vector and the electric field in the host mediu
~vacuum, in a particular case!. At the same time, our deriva
tion shows that tensorxJ has to be considered as the effecti
parameter of the actual medium. The reader should no
confused by this point. As we have pointed out above, in
model of dipolar scattering elements in the host medium,
wave numberq determines retardation in the dipole-dipo
interaction. Therefore, in the proposed dynamical theory
crystal lattices, all effective-medium quantities, which d
scribe the actual medium, are dependent on the wave num
in the host medium. The static-field theory of crystal lattic
shows that because of symmetry of the three-dimensio
array, the average value of the total field is equal to the fi
in the host medium@2#. Our dynamical theory also show
that sampling functions could be expressed by the samp
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3560 57E. O. KAMENETSKII
of the electric field in the host medium@see expression~29!#.
Thus, the physical meaning of expression~32! becomes
clear.

When we considerxJ(qW ) as the Fourier image of a certa
original functionxJ(rW), the following convolution-form ex-
pression takes place:

Di~rW !5E drW8x i j ~rW2rW8!Ej
~0!~rW8!. ~33!

This is an analog of Eq.~1! for spatially homogeneous med
when the causality principle is taken into account.

IV. EVALUATION OF THE INTERACTION TENSOR

We have introduced tensorxJ(qW ) on the basis of the for-
mal procedure supposing that interaction tensorCJ (qW ) is
known. Therefore the question of how one evaluates the
teraction tensor arises.

The interaction tensor is given from the summation of
electric fields due to the array of dipoles:

Cjk~qW !pk5 (
l 52`

`

(
n52`

`

(
m52`

`

8 Ej~m,n,l !, ~34!
n-

e

where the prime indicates the omission of the term withm
5n5 l 50.

Electric field EW (m,n,l ) we define as the electric dipol
field @1#

EW ~m,n,l !5
1

4pe H @3uW ~uW •pW !2pW #S 1

r mnl
3 2

i2pq

r mnl
2 D

2@uW ~uW •pW !2pW #
4p2q2

r mnl
J exp~ i2pqrmnl!,

~35!

wherer mnl is the distance from the particle at the origin
the particle characterized by numbersm,n,l ; uW is the unit
vector directed along the radius vectorrWmnl . Substitution of
Eq. ~35! into Eq. ~34! gives Ci j (qW ) when summations ove
m,n,l for a three-dimensional array of unit dipoles are ma

At the quasistatic limit, one obtains the interaction tens
on the basis of summations for the quasistatic term (q→0)
in Eq. ~35!. These summations overm,n,l give, for example,
for the y component of the field,
based on
E~m,n,l !yuq→05
1

4pe (
l 52`

`

(
n52`

`

(
m52`

`

8
@3uW ~uW •pW !2pW #y

r mnl
3

5 (
l 52`

`

(
n52`

`

(
m52`

`

8
3@~mDx!~nDy!px1~nDy!2py1~nDy!~ lDz!pz#2@~mDx!21~nDy!21~ lDz!2#py

@~mDx!21~nDy!21~ lDz!2#5/2 .

~36!

Since the indices in Eq.~36! run equally over positive and negative values, the cross terms involving (mDx)(nDy)px and
(hDy)( lDz)pz vanish. One can rewrite Eq.~36! as

E~m,n,l !yuq→05
1

4pe (
l 52`

`

(
n52`

`

(
m52`

`

8
2~nDy!22~mDx!22~ lDz!2

@~mDx!21~nDy!21~ lDz!2#5/2 py . ~37!

This shows, in result, that the interaction constantCJ (0) is a diagonal tensor:

E~m,n,l ! j uq→05Cj j ~0!pj . ~38!

The series~37! has been summed, using the Poisson summation formula. One can also use an alternative approach
the method of images@2#.

Now we will analyze the general expression forCJ (qW )(qÞ0) based on Eqs.~34! and ~35!. Let the limiting cutoff wave
numbers be defined as

Qx5
1

2Dx
, Qy5

1

2Dy
, Qz5

1

2Dz
. ~39!

In our model of small particles in comparison with their spacingqr.qW •rW. We have, for example, for they component of the
field
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E~m,n,l !y5
1

4pe (
l 52`

`

(
n52`

`

( 8
m52`

` H 3~m/2Qx!~n/2Qy!px1~n2/Qy
2!py13~n/2Qy!~ l /2Qz!pz2~m2/4Qx

21 l 2/4Qx
2!py

~m2/4Qx
21n2/4Qy

21 l 2/4Qz
2!5/2

3F12 i2pS m
qx

2Qx
1n

qy

2Qy
1 l

qz

2Qz
D G2p2

~m/Qx!~n/Qy!px1~n/Qy!~ l /Qz!pz2~m2/Qx
21 l 2/Qx

2!py

~m2/4Qx
21n2/4Qy

21 l 2/4Qz
2!5/2

3S m
qx

2Qx
1n

qy

2Qy
1 l

qz

2Qz
D 2J expF i2pS m

qx

2Qx
1n

qy

2Qy
1 l

qz

2Qz
D G . ~40!

In these sums, the cross terms involving (m/Qx)(n/Qy)px and (n/Qy)( l /Qz)pz vanish and one obtains the diagonal tens
CJ (qW ):

E~m,n,l ! j5Cj j ~qW !pj . ~41!

For given quantitiesQx ,Qy ,Qz the interaction tensorCj j (qW ) may be represented in the form

Cj j ~qW !5 (
l 52`

`

(
n52`

`

(
m52`

`

8 F j j ~qx ,qy ,qz ,m,n,l !expF i2pS m
qx

2Qx
1n

qy

2Qy
1 l

qz

2Qz
D G . ~42!

It is necessary to note that in our considerationCj j (qW ) is the finite-spectrum function. This means that Eq.~42! givesCj j (qW )
only for uqxu<Qx , uqyu<Qy, uqzu<Qz . For other values ofq we haveCj j (qW )50.

Because of the finite-spectrum functions, one can express

(
l 52`

`

(
n52`

`

(
m52`

`

8 F j j expF i2pS m
qx

2Qx
1n

qy

2Qy
1 l

qz

2Qz
D G

5rS qx

2Qx
D rS qy

2Qy
D rS qz

2Qz
D (

l 52`

`

(
n52`

`

( 8
m52`

`

F j j expF i2pS m
qx

2Qx
1n

qy

2Qy
1 l

qz

2Qz
D G .

~43!

This relation makes it possible to rewrite Eq.~42! as

Cj j ~qW !5E
2`

` E
2`

` E
2`

`

Gj j ~x,y,z!exp@2p i ~qxx1qyy1qzz!#dxdydx, ~44!

where

Gj j ~x,y,z!58QxQyQz (
l 52`

`

(
n52`

`

(
m52`

`

8 F j j

sin~2pQxx2pm!

2pQxx2pm

sin~2pQyy2pn!

2pQyy2pn

sin~2pQzz2p l !

2pQzz2p l
. ~45!
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When wave numbersqx ,qy ,qz are considered as param
eters in the expression for the functionF j j , one can see tha
Cj j (qW ) is the Fourier image of the functionGj j (rW) taking
into account thatF j j is equal to zero form5n5 l 50.

V. CONCLUDING REMARKS

The actual Coulomb field in the crystal lattice is differe
from the macroscopic field. In their dynamical theory
crystal lattices, Born and Huang used Ewald’s method
providing a way of separating the macroscopic field from
actual Coulomb field@9#. It was supposed that due to th
dipole-dipole interaction, the lattice could be imagined a
polarized continuum with small perturbation of dielectric p
larization.

Based on the Lorenz-Lorentz theory~which provides a
r
e

a

solution that takes into account only the dipole term in t
induced field!, one can develop a dynamical theory whic
considered strong field fluctuations in crystal lattices. One
the ways to realize the dynamical theory of crystal lattices
to reject the spatial average of microscopic charges and
cretize the fields on the basis of the discrete structure o
medium. This method is based on the use of the so-ca
sampling theorem.

In this paper we have shown how the sampling theor
may be applied to the dynamical theory of crystal lattic
Our method becomes very important when the wave len
in a medium is comparable with the spacing between p
ticles. In such a case the known methods of an analysi
spatially dispersive media based on the concept of a mat
continuum has obvious contradictions in the initial assum
tion.
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Any numerical examples to illustrate the usefulness of
method are beyond the scope of this paper. Nevertheless
important to point out some aspects concerning the effect
ness of the necessary computations. In our analysis we
posed that the fields are described by finite-spectrum fu
tions. Let us assume additionally that the fields are a
restricted in space by intervalsuxu<xmax, uyu<ymax, uzu
<zmax. WhenxmaxQx ,ymaxQy ,zmaxQz@1, one can use the dis
crete Fourier transform to calculateCJ (qW ). The fast Fourier
-

l e

s

r
t is
e-
p-

c-
o

transform is an efficient method for computing the discr
Fourier transform@20#.
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